from hyperopt import hp
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score, f1_score, log_loss
from torch import nn, optim
from astrodata.ml.metrics import SklearnMetric
from astrodata.ml.models import PytorchModel
from astrodata.ml.model_selection import HyperOptSelector
if __name__ == "__main__":
X, y = load_iris(return_X_y=True)
class IrisNet(nn.Module):
def __init__(self, input_layers, output_layers):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_layers, 16), nn.ReLU(), nn.Linear(16, output_layers)
)
def forward(self, x):
return self.layers(x)
model = PytorchModel(
model_class=IrisNet,
loss_fn=nn.CrossEntropyLoss,
optimizer=optim.AdamW,
device="cpu",
)
print(model)
param_grid = {
"model": hp.choice("model", [model]),
"model_params": hp.choice(
"model_params", [{"input_layers": X.shape[1], "output_layers": 3}]
),
"optimizer_params": {"lr": hp.uniform("lr", 1e-4, 1e-2)},
"batch_size": hp.choice("batch_size", [32, 64]),
"epochs": hp.choice("epochs", [5, 10, 15]),
}
accuracy = SklearnMetric(accuracy_score, greater_is_better=True)
f1 = SklearnMetric(f1_score, average="micro")
logloss = SklearnMetric(log_loss)
metrics = [accuracy, f1, logloss]
hos = HyperOptSelector(
param_space=param_grid,
scorer=accuracy,
use_cv=False,
val_size=0.1,
random_state=42,
max_evals=100,
metrics=metrics,
)
hos.fit(X, y)
print(hos.get_best_params())
print(hos.get_best_metrics())