import torch.nn.functional as F
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import accuracy_score, f1_score, log_loss
from sklearn.model_selection import train_test_split
from torch import nn, optim
from astrodata.ml.metrics import SklearnMetric
from astrodata.ml.models import PytorchModel
if __name__ == "__main__":
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
class SimpleClassifier(nn.Module):
def __init__(self, input_layers, output_layers):
super(SimpleClassifier, self).__init__()
self.fc1 = nn.Linear(input_layers, 64)
self.bn1 = nn.BatchNorm1d(64)
self.fc2 = nn.Linear(64, output_layers)
def forward(self, x):
x = self.fc1(x)
x = self.bn1(x)
x = F.relu(x)
x = self.fc2(x)
return x
model = PytorchModel(
model_class=SimpleClassifier,
model_params={
"input_layers": X_train.shape[1],
"output_layers": max(y_train) + 1,
},
loss_fn=nn.CrossEntropyLoss,
optimizer=optim.AdamW,
optimizer_params={"lr": 1e-3},
epochs=10,
batch_size=32,
device="cpu",
)
print(model.get_params())
model.fit(
X=X_train,
y=y_train,
)
y_pred = model.predict(
X=X_test,
batch_size=32,
)
accuracy = SklearnMetric(accuracy_score, greater_is_better=True)
f1 = SklearnMetric(f1_score, average="micro")
logloss = SklearnMetric(log_loss)
metrics = [accuracy, f1, logloss]
print(model.get_metrics(X_test, y_test, metrics))