import torch.nn.functional as F
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score, f1_score, log_loss
from sklearn.model_selection import train_test_split
from torch import nn, optim
from astrodata.ml.metrics import SklearnMetric
from astrodata.ml.models import PytorchModel
from astrodata.ml.model_selection import GridSearchSelector
if __name__ == "__main__":
X, y = load_iris(return_X_y=True)
class IrisNet(nn.Module):
def __init__(self, input_layers, output_layers):
super().__init__()
self.layers = nn.Sequential(
nn.Linear(input_layers, 16), nn.ReLU(), nn.Linear(16, output_layers)
)
def forward(self, x):
return self.layers(x)
model = PytorchModel(
model_class=IrisNet,
loss_fn=nn.CrossEntropyLoss,
optimizer=optim.AdamW,
device="cpu",
)
print(model)
param_grid = {
"model_params": [{"input_layers": X.shape[1], "output_layers": 3}],
"optimizer_params": [{"lr": 1e-2}, {"lr": 1e-3}, {"lr": 1e-4}],
"batch_size": [32, 64],
"epochs": [5, 10],
}
accuracy = SklearnMetric(accuracy_score, greater_is_better=True)
f1 = SklearnMetric(f1_score, average="micro")
logloss = SklearnMetric(log_loss)
metrics = [accuracy, f1, logloss]
gss = GridSearchSelector(
model,
param_grid=param_grid,
scorer=accuracy,
val_size=0.1,
random_state=42,
metrics=metrics,
)
gss.fit(X, y)
print(gss.get_best_params())
print(gss.get_best_metrics())